A comprehensive analysis of hyper-heuristics
نویسندگان
چکیده
Meta-heuristics such as simulated annealing, genetic algorithms and tabu search have been successfully applied to many difficult optimization problems for which no satisfactory problem specific solution exists. However, expertise is required to adopt a metaheuristic for solving a problem in a certain domain. Hyper-heuristics introduce a novel approach for search and optimization. A hyper-heuristic method operates on top of a set of heuristics. The most appropriate heuristic is determined and applied automatically by the technique at each step to solve a given problem. Hyper-heuristics are therefore assumed to be problem independent and can be easily utilized by non-experts as well. In this study, a comprehensive analysis is carried out on hyper-heuristics. The best method is tested against genetic and memetic algorithms on fourteen benchmark functions. Additionally, new hyperheuristic frameworks are evaluated for questioning the notion of problem independence.
منابع مشابه
The Effect of the Set of Low-Level Heuristics on the Performance of Selection Hyper-heuristics
The present study investigates the effect of heuristic sets on the performance of several selection hyper-heuristics. The performance of selection hyper-heuristics is strongly dependant on low-level heuristic sets employed for solving target problems. Therefore, the generality of hyper-heuristics should be examined across various heuristic sets. Unlike the majority of hyper-heuristics research,...
متن کاملHyperion - A Recursive Hyper-Heuristic Framework
Hyper-heuristics are methodologies used to search the space of heuristics for solving computationally di cult problems. We describe an object-oriented domain analysis for hyper-heuristics that orthogonally decomposes the domain into generative policy components. The framework facilitates the recursive instantiation of hyper-heuristics over hyper-heuristics, allowing further exploration of the p...
متن کاملMulti-stage hyper-heuristics for optimisation problems
There is a growing interest towards self configuring/tuning automated general-purpose reusable heuristic approaches for combinatorial optimisation, such as, hyper-heuristics. Hyper-heuristics are search methodologies which explore the space of heuristics rather than the solutions to solve a broad range of hard computational problems without requiring any expert intervention. There are two commo...
متن کاملSequence analysis-based hyper-heuristics for water distribution network optimisation
Hyper-heuristics operate at the level above traditional (meta-)heuristics that ‘optimise the optimiser’. These algorithms can combine low level heuristics to create bespoke algorithms for particular classes of problems. The low level heuristics can be mutation operators or hill climbing algorithms and can include industry expertise. This paper investigates the use of a new hyperheuristic based ...
متن کاملA tensor-based selection hyper-heuristic for cross-domain heuristic search
Hyper-heuristics have emerged as automated high level search methodologies that manage a set of low level heuristics for solving computationally hard problems. A generic selection hyper-heuristic combines heuristic selection and move acceptance methods under an iterative single point-based search framework. At each step, the solution in hand is modified after applying a selected heuristic and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intell. Data Anal.
دوره 12 شماره
صفحات -
تاریخ انتشار 2008